Variable Selection in Nonparametric Regression with Continuous Covariates
نویسندگان
چکیده
منابع مشابه
Nonparametric Regression using Bayesian Variable Selection
This paper estimates an additive model semiparametrically, while automatically selecting the significant independent variables and the app~opriatc power transformation of the dependent variable. The nonlinear variables arc modeled as regression splincs, with significant knots selected fiom a large number of candidate knots. The estimation is made robust by modeling the errors as a mixture of no...
متن کاملNonparametric Regression with Nonparametrically Generated Covariates
In this paper, we analyze the properties of nonparametric estimators of a regression function when some covariates are not directly observed, but have only been estimated by some nonparametric procedure. We provide general results that can be used to establish rates of consistency or asymptotic normality in numerous econometric applications, including nonparametric estimation of simultaneous eq...
متن کاملEstimation and Variable Selection in Additive Nonparametric Regression Models 1
Additive regression models have been shown to be useful in many situations. Numerical estimation of these models is usually done using the back-tting technique. This iterative numerical procedure converges very fast but has the disadvantage of a complicated`hat matrix.' This paper proposes an estimator with an explicit`hat matrix' which does not use backktting. The asymptotic normality of the e...
متن کاملTitle Model Checking and Variable Selection in Nonparametric Regression
February 19, 2015 Type Package Title Model Checking and Variable Selection in Nonparametric Regression Version 1.0 Date 2012-08-03 Author Adriano Zanin Zambom Maintainer Adriano Zanin Zambom Depends R (>= 2.15.0), dr, MASS, graphics Description This package provides tests of significance for covariates (or groups of covariates) in a fully nonparametric regression mode...
متن کاملVariable Selection in Nonparametric and Semiparametric Regression Models
This chapter reviews the literature on variable selection in nonparametric and semiparametric regression models via shrinkage. We highlight recent developments on simultaneous variable selection and estimation through the methods of least absolute shrinkage and selection operator (Lasso), smoothly clipped absolute deviation (SCAD) or their variants, but restrict our attention to nonparametric a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 1991
ISSN: 0090-5364
DOI: 10.1214/aos/1176348375